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firm links to experimental data. We will follow recent experiments [4] and adopt a model where a
single dsDNA strand is chemically tethered to a solid substrate and encapsulated by a large volume
of explicit solvent (Fig. 2). Once this system has equilibrated at a base temperature TB (NVT, NPT
ensembles), the slab may be rapidly thermostatted to a peak at TP = TB + �T , mimicking the
effect of transient heating. Temperature control may then be disabled (NVE) at the energy flux
monitored through the solvent channel JH2O, through the DNA JDNA, and between subsystems
JDNA!H2O. As a collateral result, the resulting all–atom trajectory facilitates reconstruction of the
vibrational modes underlying transport.

�T

JH2O

JDNA

JDNA!H2O

Figure 2: Model for nonequilibrium simu-
lations of heat transport following a tempera-
ture pulse �T . Heat fluxes through the DNA
(JDNA), water (JH2O) and between the two re-
gions (JDNA!H2O) are indicated.

To assess the feasibility of this strategy, we have per-
formed simulations in which the temperature of an Au
(111) slab was ramped from an equilibrium value of
TB = 300.0 K to a peak of TP = 600.0 K over a pe-
riod of 500 fs. The time required for a thermal packet
to traverse the tethered dsDNA increased quasi–linearly
with distance for sites lying up to ⇠30 bases from the
surface (Fig. 3). Furthermore, the front propagated uni-
formly through the sugar–phosphate backbone, rapidly
thermalizing the flaking nucleobases on the order of a
few picoseconds. These observations are consistent with
a complex interplay between diffusive heat propagation
and prominent long–wavelength transport modes. Fur-
ther scrutiny indicates that heat propagates in a slow, dif-
fusive manner through the solvent channel, with a char-
acteristic t ⇠ `2 dependence at a fixed distance from the
surface. The preliminary observations from our interim proposal have been augmented by our off–
cycle IC allocation (Fig. 3). These data provide a compelling motivation for further efforts, and
have already revealed complex nuances of thermal transport dynamics in dsDNA.

Milestone 1 (May, 2018): Simulations of thermal transport through surface–bound dsDNA
strands. The deliverables of this milestone will afford a structural foundation for heat transport

through dsDNA, parameterize the crossover between transport regimes, and dissect the interplay

between system and bath degrees of freedom.

We will simulate heat transport through dsDNA at base temperatures (290.0 K  TB  300.0 K)
that lie outside the critical region for strand melting. We will initially employ strands with high AT
content, supplemented by investigations of GC rich, high melting point sequences.1 Key observ-
ables will include local temperatures, heat fluxes through the strand and solvent, and phase space
coordinates for the entire simulation trajectory. These data will allow us to dissect parallel stud-
ies by experimental (CINT) collaborators and parameterize an analytical model for heat transport
through DNA 2. Furthermore, analysis of the vibrational modes underlying transport will reveal the

1The melting point of AT rich sequences is lower than that of their GC rich counterparts due to the larger number
of cross–strand hydrogen bonds that must be broken in the GC segments.

2And, by extension, nanoscale ‘pillars’ in the large.
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Scaling of backbone fluxes in high-temperature and low-temperature 
regimes probes energy landscape geometry.

Master equation approach can quantify

transient fluxes versus local temperature gradient.
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Probes energy landscape properties through bath

temperature dependence in simulation…


…or in experiment!
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